A machine learning algorithm to predict a culprit lesion after out of hospital cardiac arrest

dc.contributor.authorPareek, Nilesh
dc.contributor.authorFrohmaier, Christopher
dc.contributor.authorSmith, Mathew
dc.contributor.authorKordis, Peter
dc.contributor.authorCannata, Antonio
dc.contributor.authorNevett, Joanne
dc.contributor.authorFothergill, Rachael
dc.contributor.authorNichol, Robert
dc.contributor.authorSullivan, Mark
dc.contributor.authorSunderland, Nicholas
dc.contributor.authorJohnson, Thomas W.
dc.contributor.authorNoc, Marko
dc.contributor.authorByrne, Jonathan
dc.contributor.authorMacCarthy, Philip
dc.contributor.authorShah, Ajay M.
dc.date.accessioned2023-11-24T16:18:13Z
dc.date.available2023-11-24T16:18:13Z
dc.date.issued2023-05
dc.identifier.citationPareek, N., et al., 2023. A machine learning algorithm to predict a culprit lesion after out of hospital cardiac arrest. Catheterization and Cardiovascular Interventions, 102 (1), 80-90.en_US
dc.identifier.doi10.1002/ccd.30677
dc.identifier.issn1522-1946
dc.identifier.issn1522-726X
dc.identifier.pmid37191312
dc.identifier.urihttp://hdl.handle.net/20.500.12417/1671
dc.language.isoenen_US
dc.publisherWileyen_US
dc.source.journaltitleCatheterization and Cardiovascular Interventionsen_US
dc.subjectEmergency Medical Servicesen_US
dc.subjectAlgorithmsen_US
dc.subjectCardiopulmonary Resuscitationen_US
dc.subjectCoronary Angiographyen_US
dc.subjectCoronary Artery Diseaseen_US
dc.subjectOut-of-Hospital Cardiac Arrest (OHCA)en_US
dc.subjectRetrospective Studiesen_US
dc.titleA machine learning algorithm to predict a culprit lesion after out of hospital cardiac arresten_US
dc.typeJournal Article/Review
dcterms.dateAccepted2023-04-03
dspace.entity.typePublication
refterms.dateFirstOnline2023-05-16
refterms.panelUnspecifieden_US
rioxxterms.licenseref.startdate2023-09-15
rioxxterms.typeJournal Article/Reviewen_US
rioxxterms.versionNAen_US
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: